Iklan 1

Rabu, November 05, 2008

Analisis Varians Desain Faktorial (bagian 1)

Analisis varians dapat dikembangkan aplikasinya untuk menganalisis data penelitian yang terdiri dari satu variabel dependen kontinum dan lebih dari satu variabel independen kategorik. Nah pengembangan ini yang dinamakan Analisis Varians Desain Faktorial.
“Dari namanya sudah terdengar susah…,” terdengar dari lubuk hati beberapa pembaca,”Mungkinkah kita melakukan analisis varians sederhana sebanyak variabel independen saja?”
Ya…ya mungkin saja. Hanya saja, kita akan memperoleh beberapa manfaat dengan melakukan analisis desain faktorial ini; yaitu analisis interaksi antar variabel independen dan masalah tuntutan besarnya sampel. Analisis interaksi antar variabel independen akan dijelaskan lebih jauh dalam tulisan terkait dengan ini. Terkait dengan manfaat kedua, Analisis varians desain faktorial menuntut jumlah subjek lebih sedikit dibandingkan dengan analisis varians sederhana untuk memperoleh kekuatan analisis yang sama. Atau dengan kata lain, dengan jumlah subjek yang sama, kekuatan analisis anava 2 jalur lebih besar daripada anava satu jalur. Hal ini tidak dibahas di sini secara detil. Bagi yang berminat untuk mendiskusikan ini bisa menghubungi saya langsung atau membaca buku “Statistical Power Analysis” yang ditulis Cohen (1988).

Kembali ke Variasi Variabel Dependen

Masih ingat gambar ini bukan? Ini adalah gambar model dari analisis varians sederhana (atau disebut juga satu jalur). Nah anggaplah kita kemudian menambahkan satu variabel lagi untuk menjelaskan variasi prestasi siswa, misalnya variasi jenis kelamin. Sehingga gambar modelnya sekarang menjadi seperti ini:
Nah dalam gambar di atas, bisa dilihat bahwa variasi prestasi siswa sekarang berusaha dijelaskan oleh variasi model pembelajaran dan variasi jenis kelamin. Selain kedua variabel ini, ada satu bagian lagi yang menjadi akibat dari ‘pertemuan’ dua variabel ini, yaitu interaksi. Kemudian bagian lain dari variasi prestasi siswa yang tidak dijelaskan oleh variasi model pembelajaran, jenis kelamin, maupun interaksi keduanya merupakan error atau residu.

Apa Maksudnya Interaksi?

Kita dapat membayangkan interaksi ini seperti mencampur dua bahan kimia. Contoh klasiknya misalnya kita mencampur Hidrogen (yang mudah terbakar) dan Oksigen (yang juga mudah terbakar). Ketika dicampur, kedua bahan kimia ini menjadi air (H2O) yang justru memadamkan api.
Bagaimana contoh nyatanya?
Begini, misalnya kita memiliki dua jenis model pembelajaran; yaitu: diskusi dan experiential learning (EL). Nah misalnya model pembelajaran yang efektif untuk tiap jenis kelamin itu berbeda. Siswa laki-laki memperoleh manfaat lebih banyak jika mereka mendapat model pembelajaran diskusi, sementara siswa perempuan melalui model EL. Oleh karena itu, ketika siswa laki-laki memperoleh EL, prestasinya tidak meningkat sebanyak siswa perempuan. Sebaliknya ketika siswa perempuan memperoleh diskusi, prestasinya tidak meningkat sebanyak siswa laki-laki. Nah jika ini terjadi, ini berarti ada interaksi antara model pembelajaran dengan jenis kelamin.

Main Effect

Hmm… saya agak bingung nerjemahinnya… Akibat Utama? Hehe… bercanda… kita tetap menggunakan bahasa aslinya saja ya (saya singkat ME), supaya teman2 terbiasa dengan istilah ini jika nanti membaca buku-buku luar tentang statistik.
Main Effect (ME) ini merupakan efek yang ditimbulkan oleh adanya variabel independen. Banyaknya ME ini sama dengan banyaknya variabel independen yang dilibatkan dalam penelitian. ME ini bisa dibilang efek atau ‘pengaruh’ langsung suatu variabel independen terhadap variabel dependen, tanpa memperhitungkan kehadiran variabel independen lain. (kata pengaruh saya beri tanda kutip, karena interpretasi tentang adanya pengaruh hanya dapat dilakukan jika kita melakukan penelitian eksperimental).
ME ini sama seperti ketika kita melakukan analisis varian sederhana (satu jalur). Cara menghitungnya pun persis sama dengan analisis varian sederhana, sehingga hasil perhitungannya juga akan sama saja. Saya buktikan ya:


Kedua tabel di atas berasal dari data yang sama. Tabel pertama, merupakan hasil analisis varians 2 jalur dengan melibatkan model pembelajaran (model) dan jenis kelamin (jenkel), sementara tabel kedua merupakan hasil analisis varians satu jalur dengan model sebagai variabel independennya. Kedua tabel menunjukkan antara hasil hitung yang sama antara Jumlah Kuadrat (Sum of Squares), db (df), dan Mean Kuadrat (Mean Squares) untuk model dalam tabel pertama dan kedua.
“Tapi … nilai F dan p nya berbeda,” mungkin begitu komentar seseorang di sana.
Ya nilai F dan p nya memang berbeda, karena dalam analisis dua jalur, variasi error yang tidak dapat dijelaskan menjadi lebih kecil karena kehadiran variabel lain (dalam contoh kita tadi variabel lain ini adalah jenis kelamin), dan interaksi antar variabel independen. Oleh karena itu dalam analisis varian 2 jalur, kita memiliki kemungkinan lebih besar untuk menolak hipotesis nol. (Ini yang saya sebut di atas “dengan jumlah subjek yang sama, kekuatan analisis anava 2 jalur lebih besar daripada anava satu jalur”). Kita akan bahas ini lebih detil ketika sampai pada masalah variasi error.

Interaction Effect

Kita singkat IE saja ya. Ini adalah efek dari kehadiran kedua variabel independen bersama-sama seperti yang sudah saya ilustrasikan di atas.
Bagaimana menghitungnya?
Perhitungan IE ini diawali dengan perhitungan JK antar sel yang diakibatkan pertemuan dua variabel independen. Konkretnya dapat dilihat dalam gambar berikut:

Kita memiliki 4 sel dalam kasus ini, karena tiap variabel independent terdiri dari 2 kelompok. Banyaknya sel akan sama dengan perkalian jumlah level/kelompok dalam tiap variabel independen. Ok lalu bagaimana menghitung Jumlah Kuadrat antar sel ini?
Menghitung jumlah kuadrat dari sel, sangat mirip dengan menghitung jumlah kuadrat antar di analisis varian satu jalur. Hanya saja, sekarang kita menghitung jumlah kuadrat antar sel di analisis varians dua jalur. Masih ingat kan dengan rumus JK antar di anava 1 jalur? Begini: Nah, jika menghitung JK antar sel, maka rumusnya akan menjadi begini:Atau jika kita bongkar rumus ini akan menjadi seperti ini:

Lagi-lagi jangan kuatir harus menghafal banyak rumus. Cobalah lihat persamaan-persamaannya dengan JK antar. Ketika menghitung JK sel, kita hanya memperlakukan sel seolah-olah sebagai kelompok. (kalau kamu bandingkan, rumus JK sel dan JK antar persis sama. Yang berbeda hanya konteksnya saja).
Setelah kita menghitung JK sel, berikutnya kita baru bisa menghitung JK interaksi dengan rumus berikut:


Mengapa JK interaksi didapat dari mengurangi JK sel dengan JKA dan JKB?
Karena begini pandangannya: Variasi antar sel itu di’pengaruhi’ oleh variasi dari JKA, JKB dan JK interaksi. JK interaksi sendiri agak sulit untuk dihitung secara langsung, sementara JK sel cukup mudah dihitung secara langsung dari data. Oleh karena itu kita menghitung dulu JK sel, lalu mengurangi variasi yang terjadi antar sel ini dengan JKA dan JKB.

JK residu/error

Nah setelah menghitung semua urusan efek-efek tadi, sekarang saat nya kita menghitung JK residu. JK residu atau disebut juga JK dalam, dihitung dari variasi antar individu di dalam sel. Masih ingat menghitung JK dalam di Anava satu jalur? Cara menghitungnya persis sama, hanya berbeda konteks. Rumus di atas merupakan rumus mencari JK dalam untuk anava satu jalur. Jika diterapkan pada anava desain faktorial, maka rumus tersebut diterapkan pada sel, menjadi begini:
Huruf a dan b itu menunjukkan kelompok pada variabel independen pertama (a) dan kedua (b). Jadi jika menggunakan contoh di atas, jika a=1 dan b=1, ini berarti kita menghitung JK dalam kelompok pria yang diberi treatment diskusi. Setelah tiap sel kita hitung JK dalam tiap sel, kemudian kita jumlahkan menjadi JK dalam.
Mean Square/Mean Kuadrat

Perhitungan mean kuadrat (MK) untuk anava 2 jalur sama dengan anava 1 jalur, yaitu JK dibagi df.
Banyaknya MK antar akan sama dengan banyaknya variabel independen. Dalam contoh kita di atas, kita akan memiliki 2 MK antar, satu untuk variabel model pembelajaran dan satu untuk jenis kelamin.
Tapi bagaimana menghitung db nya?
Pada dasarnya sama saja dengan sebelumnya :
Nilai F dan Signifikasi

Seperti anava satu jalur, nilai F didapatkan dari pembagian MK dari efek yang diteliti dengan MK dalam. Dalam contoh kita memiliki tiga efek yang ingin dilihat, yaitu efek dari metode pembelajaran, efek dari jenis kelamin dan efek interaksi metode pembelajaran dengan jenis kelamin. Oleh karena itu kita akan mendapatkan tiga nilai F, satu untuk masing-masing efek.
Nah masing-masing nilai F ini tentunya juga memiliki nilai p yang akan menentukan apakah variabel independen tersebut memiliki efek yang signifikan terhadap variabel dependen. Kita dapat mengetahui besarnya nilai p ini dari tabel F, atau menggunakan program komputer seperti excell dan SPSS.

Contoh Hasil Analisis Menggunakan SPSS


Karena artikel dalam blog ini lebih menekankan pada ide dan konsep, maka saya memutuskan untuk tidak menampilkan contoh hitungan manual. Semua perhitungan manual akan mirip dengan analisis varian satu jalur. Jadi pembaca bisa membaca-baca lagi artikel tersebut. Walaupun demikian saya tetap menganjurkan pembaca untuk mencoba-coba menganalisis secara manual untuk mendapatkan ‘feeling’ dari proses analisisnya, khususnya jika jumlah data yang dianalisis tidak banyak. Dalam arti, kita akan lebih memahami bagaimana kita bisa sampai pada hasil analisis seperti ini atau itu.
Contoh dalam tabel berikut diproduksi dari program analisis SPSS.


Dalam tabel di atas, dapat kita lihat bahwa kedua variabel independen tidak memberikan efek yang signifikan terhadap prestasi siswa. Dengan kata lain tidak ada perbedaan mean antara mereka yang berjenis kelamin pria dan wanita (F(1,16)=1.855, p=0.192), dan antara mereka yang mendapat model diskusi dan EL (F(1,16)=.464, p=.506). Selain kedua Main Effect tersebut, kita bisa melihat bahwa interaksi antara model pembelajaran dan jenis kelamin memiliki efek yang signifikan (F(1,16)=9.391, p=.007).
Lalu artinya apa? Mengapa Main Effects nya tidak signifikan tetapi interaksinya bisa signifikan. Seperti apa interaksi yang terjadi antara kedua variabel independen tersebut?
Untuk menjawabnya pertanyaan tersebut kita akan berjumpa lagi di artikel berikutnya.

9 komentar:

AZBA mengatakan...

Seperti mendapat pencerahan, Terimakasih Bung Agung sedikit telah membuka keawaman sy, kebetulan proposal sy menggunakan factorial design. Sy tunggu tulisan Bung selanjutnya.

Agung Santoso mengatakan...

Wah bung Azba,

Terima kasih untuk komentarnya. Senang bisa membantu.

Komunitas Pendidikan mengatakan...

Makasi ni ilmunya jadi bertambah lagi ni ilmu saya ...

Salam Kenal
Pendidikankita.com

Anonim mengatakan...

mas mas lha sesudah pulang kampung kok gak ada kabarnya...ayo kpn niy postingannya lagi...
tks

Agung Santoso mengatakan...

Halo,
Wah iya nih. Gara-gara pulang kampung jadi agak terhambat akses internetnya. Saya sudah dan sedang mengupdate lagi urusan analisis varian ini.

Terima kasih sudah mengikuti perkembangannya.

Anonim mengatakan...

Bang, judul penelitian saya "Persepsi pencitraan politik terhadap kinerja KIB II ditinjau dari profesi" disini saya menggunakan 3 sampel ( Profesional, PNS dan Wiraswasta) nah tolong pencerahannya rumus anava seperti apa yang harus saya pakai? trima kasih sebelumnya

Agung Santoso mengatakan...

Hai, maaf saya balasnya lama sekali ya.

Dari judul penelitian, saya pikir analisis varian satu jalur bisa digunakan sebagai teknik analisisnya.

Anonim mengatakan...

Hai Bung Agus... Salam kenal
Mohon maaf sebelumnya... saya mau tanya ni.
rencana penelitian saya dengan Judul penelitian yaitu :
“Pengaruh Jenis Kelamin, Jurusan dan Tempat Tinggal Terhadap Aspirasi Karir Siswa serta Implikasinya Terhadap Bimbingan Karir di SMA” (Penelitian di SMAN 1 Megang Sakti dan SMAN 1 Kota Lubuklinggau).

yang saya ingin tanyakan adalah :

1.Menurut Bung Agus, Bagaimana metodologi penelitian yang mesti saya gunakan? terkait dengan jenis penelitian, penarikan/syarat sampel, teknik analisis data?
2. Bagaimana gambar tabel yang harus saya buat untuk menggambarkan desain penelitian saya dengan 1 variabel dependent yaitu aspirasi karir, dan 3 variabel independent kategorikal: Laki-laki - perempuan, IPA - IPS dan Desa - Kota?

serta, mohon pencerahan berkenaan dengan ANAVA 3 jalur/jalan.

Demikian, Saya sangat membutuhkan arahan dan petunjuk dari Bung Agus, ..
Terima Kasih...

Agung Santoso mengatakan...

Halo,
Maaf sebelumnya hanya membetulkan saja, nama saya Agung jadi bukan Agus. Ya, tapi memang banyak yang sering salah sebut.

Untuk pertanyaan pertama
Saya merasa judul yang diberikan agak 'berat' karena menguji pengaruh. Biasanya pengujian pengaruh berasumsi variabel-variabel independen dapat dimanipulasi (diubah-ubah). Nah dalam kasus penelitian anda, sepertinya tidak mungkin variabel independennya diubah-ubah. Misalnya jenis kelamin, kita tidak bisa mengubah-ubah jenis kelamin seseorang, yang tadinya sudah perempuan ya tidak bisa diubah jadi laki-laki. Oleh karena itu menurut saya perlu dipertimbangkan judul dengan 'pengaruh' tersebut. Mungkin bisa diperhalus menjadi 'perbedaan' atau 'korelasi/hubungan'.

Untuk jenis penelitian, mengingat tidak memungkinkannya manipulasi variabel independen, maka jenis penelitiannya bisa penelitian non-experimental seperti penelitian survey.

Untuk sampel, saya pikir sangat tergantung dari generalisasi yang hendak dilakukan oleh peneliti. Semakin besar populasi tempat generalisasinya, makin besar sampel yang dibutuhkan. Termasuk juga pertimbangan dana dan tenaga yang dimiliki. Misalnya jika menggunakan sampel probabilistik tentunya akan memakan tenaga (dan mungkin biaya) yang lebih besar.

Untuk teknik analisis data, saya pikir tergantung bagaimana anda nanti memperlakukan setiap variabel independen. Jika anda ingin juga melihat interaksi antar variabel independen, maka analisis 3 jalur dapat dilakukan. Tapi jika ketertarikan hanya pada tiap variabel independen maka analisis varian atau uji t dapat digunakan.

Untuk pertanyaan kedua
Saya merasa kurang memahami pertanyaan anda. Maksud gambar tabel ini seperti apa ya?
Kalau struktur data di SPSS, maka akan ada 4 kolom yang digunakan. satu untuk tiap variabel.
Untuk gambar tabelnya saya sendiri masih belum bisa menggambarnya dengan baik di komen ini, jadi masih menunggu ya.

Untuk analisis varian 3 jalur
Anda bisa membaca dulu tentang analsis varian desain faktorial. Meskipun contoh yang saya berikan hanya untuk 2 jalur, tapi prinsip dasarnya sama.